Reifer Honig oder nicht?
Das ist hier die Frage!

Zwei einfache Methoden zur Bestimmung des Wassergehalts von Bienenhonig

B. Weyers, B. Höhne, I. Heil und J. Bohrmann

Zu Beginn der Sekundarstufe II können anhand der hier vorgestellten Experimente wichtige Aspekte naturwissenschaftlichen Arbeitens bewusst gemacht und geübt werden. Dies trägt der in der Oberstufe stärker ausgeprägten Wissenschaftspropädeutik Rechnung.

Stichwörter: Honigbiene, Imkerei, Aräometer, Refraktometer, Wassergehalt von Honig, Honigverordnung

1 Einleitung

Die Honigbiene eignet sich nicht nur als Versuchstier für den Einsatz im Biologieunterricht [vgl. 1–6], sondern auch der von ihr produzierte Honig (s. Kasten 1) kann in verschiedenen Kontexten in der Schule genutzt werden. Die Verarbeitung des Honigs zu Met wurde bereits beschrieben [7]. Eine weitere Möglichkeit besteht darin, dass die Schüler den Wassergehalt von Honig messen und so seine Tauglichkeit als Lebensmittel prüfen. Der Gesetzgeber und der deutsche Imkerbund haben nämlich neben allgemeinen Bestimmungen u.a. Höchstwerte für den Wasseranteil von Bienenhonig festgelegt (s. Kasten 1). Diese Grenzwerte sorgen dafür, dass kein unreifer oder mit Wasser gestreckter Honig in den Handel gelangt, denn auch unreifer Honig enthält noch zuviel Wasser (s. Kasten 1). Bei einem zu hohen Wassergehalt kann der Honig in Gärung übergehen, was am Geruch und am Geschmack des Honigs erkennbar ist und ihn ungenießbar macht.

2 Methoden zur Bestimmung des Wassergehalts in Honig

Die Methoden der einfach und kosten­günstig durchzuführenden Versuche basieren auf zwei physikalischen Stoff-

2.1 Messung des Wassergehalts mittels Dichtebestimmung anhand eines Äriätometers

Da die Dichte reinen Wassers bei 1 g/mL liegt und die Dichte reifen Honigs ca. 1,5 g/mL beträgt, kann der Wassergehalt von Honig durch die Ermittlung seiner Dichte bestimmt werden. Dazu wird ein Äriätometer (griech. amios: dünn), auch Senkspindel, Senkwaage, Dichtespindel oder Hygrometer genannt, mit einem Dichtebereich von 1,100 bis 1,200 g/mL eingesetzt, das in eine 1:3 verdünnte Honiglösung eingetaucht wird. Die Verdünnung gewährleistet eine praktikable Untersuchung jeglicher Honige, unabhängig von deren Konsistenz. Äriätometer sind in vielfältigen Varianten im Laborbedarf für weniger als 50 Euro zu beziehen (Abb. 2).

2.2 Messung des Wassergehaltes mittels Lichtbrechung anhand eines Refraktometers

Das Refraktometer und alle vorbeireiteten Honigproben sollten sich vor Versuchsbeginn einige Stunden im Unterrichtsraum befinden, damit sich deren Temperatur an die dort herrschende Raumtemperatur anpassen kann. Zur Einbeziehung eines temperaturabhängigen Korrekturwertes beachte man die Geräteanleitung.

Abb. 1: Die Zusammensetzung von Honig in Gewichtsprozenten (nach [9], verändert)

Abb. 2: Beispielhafter Versuchsaufbau der Äriätometermessung (nach [10], verändert)

Abb. 4: Honigrefraktometer und dessen Handhabung (nach [12], verändert)

2.3 Mögliche Fehlerquellen

2.3.1 Systemische Fehler

Die maximale Ablesegenauigkeit der Messskala lässt beim Refraktometer Unterschiede im Wassergehalt von 0,1% und bei der Dichtemessung mit dem Aräometer von 0,25% erkennen. Dies sagt jedoch nichts darüber aus, wie nahe die Ergebnisse dem wahren Wassergehalt kommen.

Anstatt mit den hier vorgestellten indirekten Methoden kann der Wassergehalt mit einem aufwändigeren Versuchs aufbau auch direkt chemisch nach Fischer bestimmt werden [14], wobei die störenden Einflüsse aller übrigen Bestandteile möglicherweise geringer sind. Letztlich kann man sich dem wahren Wert aber immer nur annähern, und nur umfangreiche Untersuchungen zu Wiederfindungsiraten in künstlich zusammengestellten „Honigen“ könnten die Genauigkeit verschiedener Methoden präzisieren.

Die absolute Genauigkeit der eingesetzten Methode und das Können des Experimentators bedingen zusammen die Standardabweichung von Messreihen; diese ist ein Maß für die relative Genauigkeit der Methode.

Um solchen grundsätzlichen Schwierigkeiten Rechnung zu tragen, könnten Gesetzesverordnungen daher auch eine bestimmte Messmethode vorschreiben.

2.3.2 Fehler bei der Versuchs durchführung und Hinweise zu deren Vermeidung

Bei der Aräometermessung ist ebenfalls eine möglichst exakte Einstellung der Messtemperatur wichtig. Sollte das Aräometer beim Eintauchen in die Lösung über den Gleichgewichtspunkt hinaus be netzt werden, erhöht sich sein Eigenge wicht, und es wird eine etwas zu geringe Dichte angezeigt. Luftblasen in der Lösung bedingen gleichfalls eine geringere Dichte.

3 Bemerkungen zum Unterricht
Der vorliegende Unterrichtsvorschlag zeigt exemplarisch auf, welche Prinzipien naturwissenschaftliches Denken und Arbeiten allgemein impliziert, welchen

3.1 Alltags- und Lehrplanbezug

Gesetzliche Bestimmungen, wie z. B. die deutsche Honigverordnung, sollen eine gleichbleibende Qualität und Sicherheit von Nahrungsmitteln, in diesem Fall von Honig, für den Verbraucher gewährleisten (s. Abschnitt 1). Die Einhaltung dieser Vorschriften muss entsprechend kontrolliert werden. Der Bereich der Lebensmittelüberwachung im Rahmen des Verbraucherschutzes ist also ein Beispiel dafür, in welchen lebensweltlichen Bezügen biologische bzw. naturwissenschaftliche Kenntnisse von Bedeutung sind.

In inhaltlicher Hinsicht dürfte den Schülerinnen und Schülern aus der Sekundarstufe I bekannt sein, was Honig ist und wie er entsteht. Der Fokus des Unterrichtsvorschlags liegt insbesondere auf fachmethodischen Aspekten. So können die Schülerinnen und Schüler erfahren, dass naturwissenschaftlich zu arbeiten – insbesondere in der Sekundarstufe II – unter anderem bedeutet (vgl. [16] und z. B. [17]):

- interdisziplinär zu arbeiten, also Kenntnisse und Methoden anderer Fächer wie Physik, Chemie und Mathematik zu integrieren und problembezogen zu nutzen,
- hypothesegeleitet zu experimentieren,
- beim Experimentieren sorgfältig, sauber und exakt zu arbeiten,
- Messungen wiederholt durchzuführen,
- verschiedene Messmethoden heranziehen und zu vergleichen,
- das Geltungsbereich und die Aus sagekraft von Messmethoden zu bewerten,
- Messergebnisse ggf. einer statistischen Überprüfung auf Signifikanz zu unterziehen.

Außerdem wird den Schülerinnen und Schülern deutlich, dass man nicht nur in der Forschung, zur Klärung bisher unbeantworteter Fragen an die Natur, den Schritten der naturwissenschaftlichen Erkenntnisgewinnung folgt, sondern dass diese auch für Prüf- und Testverfahren zur Lösung anwendungsbezogener Fragestellungen genutzt werden.

3.2 Hinweise zur Unterrichtsorganisation und zum Arbeitsmaterial

Beim Verwendung von im Handel erhältlichen Honigen ist zu erwarten, dass die eingangs aufgestellte Hypothese verifiziert wird. (Interessant wären sicherlich Messergebnisse für eine Probe, die absichtlich mit Wasser gestreckt wurde.) Die Methodendiskussion und die Betrachtung möglicher Fehlerquellen bil det einen wichtigen Schwerpunkt bei der Auswertung der erhobenen Messdaten (s. Abschnitt 2.3). Die Berechnung der Mittelwerte, Varianzen, und Standardabweichungen (vgl. [18],[19],[20]) aus den jeweiligen Messreihen der beiden Experimente (Anleitung und Beispiele s. Kasten 1 und 2 in Arbeitsmaterial 2 in der Onlineergänzung: im Sinne einer Binnendifferenzierung kann dieses den Schülerinnen und Schülern in Form gestufter Hilfen zur Verfügung gestellt werden) wirft die Frage nach deren Bedeutung auf. So lässt sich zum Beispiel aus einer möglicherweise größeren Standardabweichung bei Experiment 1 nicht etwa ableiten, die Arätometer-Methode sei „schlechter“. Vielmehr ist es in einem solchen Fall naheliegend, dass „schlechter“ experimentiert wurde, dass also Ungenaugkeiten oder Fehler bei der Durchführung und bei der Messung aufgetreten sind. Umgekehrt könnte man eine geringe Standardabweichung bei Experiment 1 nicht nur als Maß für die Genauigkeit der Methode betrachten, sondern auch als Zeichen einer sorgfältigen Kontrolle der Versuchsbedingungen und des exakten Ablegens der Werte interpretieren.

Die Auswertung im Protokoll ist mit Strukturierungshilfen und Leitfragen versehen. Die Strukturierungshilfen sind allgemein formuliert, so dass sich die Schülerinnen und Schüler auch bei der Auswertung späterer Experimente daran orientieren können. Die Leitfragen beziehen sich konkret auf die beiden Experimente zur Wassergehaltssbestimmung der Honigproben.

Als geeignetere Messmethode für den Lmk erweitert er schließlich diejenige mittels Refraktometer, insbesondere aufgrund der schnell und unkomplizierten Handhabung, die auch direkt am Bienenstock angewandt werden kann. Jedoch wäre es trägerisch, das Refraktometer für verlässlicher zu halten als das Arätometer und die Anzeige des Geräts als „sicher“ zu betrachten, denn dies setzt – abgesehen von der korrekten Handhabung – seine korrekte Eichung voraus. Es müssten also nicht nur mehrere Messungen bei ein und derselben Honigprobe erfolgen, es müssten dabei auch – sicherlich schwierig im
PROTOKOLL: Reifer Honig oder nicht? – Das ist hier die Frage!
Bestimmung des Wassergehalts von Bienenhonig mittels zweier verschiedener Methoden

Fragestellung: Entsprechen die beiden Honige der deutschen Honigverordnung?

Hypothese: Der Wassergehalt der beiden Honige ist nicht höher als 20 Prozent.

Experiment 1: Bestimmung des Wassergehalts mittels Aräometer

Material
- zu untersuchende Honige
- je Honig: Weithalsflasche mit Deckel (ca. 100 mL)
- wassersonstiger Stift
- Waage (Genauigkeit d = 0,1 g)
- je Honig: kleiner Lößel
- warmes Wasser, ca. 50°C (Thermoskanne)
- je Honig: Messzylinder (100 mL)
- Einmalpipette
- Thermometer
- Eisbad
- Aräometer (Vorsicht, zerbrechlich!)
- Küchenpapier

Durchführung
- Weithalsflasche beschriften (Honigprobe, Gruppe) und ohne Deckel auf den Wägesteller der Waage stellen, diese auf 0 tarieren.
- 35–40g Honig einwiegen, exakten Wert der eingewogenen Masse notieren (Tab. 1) und exakt die doppelte Menge warmen Wassers hinzugeben (Einwegpipette verwenden), diesen Wert ebenfalls notieren (Tab. 1)
- Weithalsflasche, von der Waage nehmen, verschließen und durch Schwenken (nicht schütteln!) den Honig in Lösung bringen
- 80mL der Honiglösung vorsichtig in den Messzylinder überführen (dekantieren)
- Temperatur der Honiglösung messen und durch Abkühlen im Eisbad möglichst genau auf die Eichtemperatur des Aräometers einstellen, exakten Temperaturwert notieren (Tab. 1)
- Aräometer sehr langsam und vorsichtig in die Honiglösung einsenken (Abb. 2) und in die Zylindermitte schieben, die Dichte an der Skala ablesen und notieren (Tab. 1)
- Aräometer, Spatel und Thermometer für die nächste Messung mit Küchenpapier und Wasser sorgfältig säubern und trocknen
- für den ermittelten Messwert mit Hilfe des Liniendiagramms (Abb. 2) den prozentualen Honiganteil bestimmen und den Wasseranteil errechnen, beide Werte notieren (Tab. 1)

Experiment 2: Bestimmung des Wassergehalts mittels Refraktometer

Material
- zu untersuchende Honige
- je Honig: kleiner Lößel
- Refraktometer
- weicher Lappen

Durchführung
- eine Lößelspitze (ca. 0,5mL) des Honigs entnehmen und möglichst gleichmäßig auf das Messprisma auftragen
- Prismakappe schließen und ausdrücken (es dürfen keine Luftblasen eingeschlossen sein)
- das Prisma gegen eine Lichtquelle (Fenster oder helle Lampe) ausrichten und den Wassergehalt an der Trennlinie ablesen, Wert notieren (Tab. 2)
- Korrekturwert ablesen und ebenfalls notieren (Tab. 2)
- abgelesenen Wert und Korrekturwert verrechnen, ermittelten Wert für den Wassergehalt notieren (Tab. 2)
- Prismakappe öffnen, das Messprisma und die Prismakappe mit einem weichen, in Wasser getauften Lappen reinigen (der Lappen darf nicht tropfnass sein und muss daher genügend ausgewaschen werden)
- Werte aller Gruppen sammeln (Tab. 3), für die untersuchten Honige jeweils Mittelwert und Standardabweichung berechnen (s. Kasten 1 in Arbeitsmaterial 2)
Beobachtung

<table>
<thead>
<tr>
<th>Honig Nr.</th>
<th>Masse des eingewogenen Honigs [g]</th>
<th>Masse des zugegebenen Wassers [g]</th>
<th>Temperatur der Honiglösung [°C]</th>
<th>Dichte der Honiglösung [g/mL]</th>
<th>Honiganteil [%]</th>
<th>Wasseranteil [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1: Wassergehalt der beiden Honigproben (ermittelt von Gruppe ____ anhand der Aräometer-Methode)

<table>
<thead>
<tr>
<th>Honig Nr.</th>
<th>abgelesener Wert [%]</th>
<th>Korrekturwert [%]</th>
<th>Wasseranteil [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2: Wassergehalt der beiden Honigproben (ermittelt von Gruppe ____ anhand der Refraktometer-Methode)

<table>
<thead>
<tr>
<th>Honig Nr.</th>
<th>Methode</th>
<th>Gruppe 1</th>
<th>Gruppe 2</th>
<th>Gruppe 3</th>
<th>Gruppe 4</th>
<th>Gruppe 5</th>
<th>Gruppe 6</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aräometer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refraktometer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Aräometer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refraktometer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3: Wassergehalt der Honigproben [%] (Werte aller Gruppen, ermittelt anhand der Aräometer-Methode und der Refraktometer-Methode)

Auswertung

Strukturierungshilfen und Leitfragen:
- Einleitungssatz formulieren (Wie viele Honige wurden von wie vielen Gruppen mittels welcher Methoden untersucht?)
- Ermittelte Werte beschreiben (Welcher Mittelwert und welche Standardabweichung ergeben sich jeweils? Gibt es evtl. einzelne „Ausreißer“?)
- Ermittelte Werte vergleichen (Decken sich die Messergebnisse von Experiment 1 und 2? Unterscheiden sich die Werte je nach Methode? Inwiefern?)
- Hypothesen überprüfen (Kann die Hypothese für beide Honige verifiziert werden?)
- Schlussfolgerungen ziehen (Entsprechen die untersuchten Honige der Honigverordnung? Dürfen sie in Deutschland verkauft werden?)
- Relevanz der Ergebnisse begründen (Welchen Nachteil hätte ein höherer Wasseranteil für den Verbraucher?)
- Methoden beurteilen (Aussagekraft der Ergebnisse, mögliche Fehlerquellen, Bedeutung einer großen oder kleinen Standardabweichung, ...)?
- Empfehlung ableiten (Welche Methode ist in der Imkerpraxis, einfacher, geeigneter, ... und warum? Ist sie auch genauer, warum (nicht)?)
- Weiterführende Fragen stellen (Weitere Bestandteile, z.B. Pollen oder ...)
Honig bei Halsentzündung?

Schulversuche zur antimikrobiellen Wirkung von Honig

I. Heil, R. Karzell, M. Zimmermann und J. Bohrmann

Die experimentelle Untersuchung der antimikrobiellen Wirkung von Honig verbindet Alltagserfahrungen der Schülerinnen und Schüler mit aktuellen Forschungsinteressen der Wissenschaft. Die Experimente zeigen den schrittweisen Erkenntnisfortschritt auf.

Stichwörter: antimikrobiell, Honig, Manuka-Honig, medizinischer Honig, Methylglyoxal

1 Einleitung
