Das Heuschreckenbein-Experiment
Ein Versuch zur Kraftentwicklung des Sprungmuskels der Wanderheuschrecke Locusta migratoria

K. Pelzer, R. Dahmen, P. Bräunig und J. Bohrmann

Das vorgestellte Experiment zur Neuro- und Muskelphysiologie ist in seiner Gesamtkonzeption für die Qualifikationsphase vorgesehen, kann jedoch in vereinfachter Form auch in der Sekundarstufe I eingesetzt werden. Ziel ist es, wissenschaftspropädeutisches Arbeiten zu erproben.

1 Der Sprung der Wanderheuschrecke
Klein und leistungsfähig – so müssten technische Hilfsmittel sein, um beispielsweise Verschüttete in Katastrophengebieten zu finden und zu bergen. Häufig lassen sich Forscher bei solch schwierigen Fragestellungen durch Naturphänomene inspirieren. Das Forschungsgebiet der Bionik bietet zahlreiche Beispiele für Lösungsmöglichkeiten, die bereits erfolgreich umgesetzt worden sind [1].

Die Funktionsweise dieses komplexen Sprungmechanismus haben z. B. Forscher der Universität Lausanne als Basis für die Entwicklung eines „Hüpfroboters“ verwendet, der einmal in der Lage sein könnte, bei der Suche von Verschütteten in extrem unzugänglichen Gebieten Aufklärung zu leisten [8].

2 Das Heuschreckenbein-Experiment
Das vorliegende Schulexperiment konzentriert sich zur Erforschung der Kraftentwicklung des Sprungmuskels auf den Hebelsystemen, doch lässt sich damit auch eine Form der Energiespeicherung durch Vorspannung demonstrieren. Mithilfe des Hebelsystems ist es möglich, die Kraftentwicklung des Sprungmuskels bei elektrischer Reizung zu ermitteln. Im Fokus des experimentellen Ansatzes steht die Frage nach der maximalen Kraft, die der Strecke der Tibia des Hinterbeins aufbringen kann. Inhaltlich bietet das Experiment eine große Bandbreite, so dass verschiedene fachliche Aspekte, beispielsweise zur Muskelphysiologie oder zum Aufbau der Muskulatur, bearbeitet werden können. Die Wanderheuschrecke besitzt in ihren Sprungbeinen gefederte Muskeln, deren Struktur als Fischgrätmuster durch den Chitinpanzer hindurch gut erkennbar ist (siehe Abb. 1). In solchen Muskeln, die auch beim Menschen (z. B. am Schienbein) zu finden sind, setzen die Muskelfasern zu beiden Seiten schräg zur längs verlaufenden Sehne an. Dadurch vergrößert sich im Vergleich zu parallelfasrigen Muskeln der physiologische...
Versuchsaufbau

<table>
<thead>
<tr>
<th>Menge</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,5-V-Batterie</td>
</tr>
<tr>
<td>ca. 2 m</td>
<td>Klingeldraht (Ø 0,6 mm)</td>
</tr>
<tr>
<td>2</td>
<td>Adernündeln (Ø 2 mm)</td>
</tr>
<tr>
<td>2</td>
<td>Krokodilklemmen</td>
</tr>
<tr>
<td>2</td>
<td>Minutienadern (Ø 0,2 mm) (erhältlich über das Internet, 2–3 € / 100 Stück)</td>
</tr>
<tr>
<td>1</td>
<td>Plastilin oder Knetmasse</td>
</tr>
<tr>
<td>1</td>
<td>Nähgarn</td>
</tr>
<tr>
<td>1</td>
<td>Linienmodell (10 cm lang)</td>
</tr>
<tr>
<td>1</td>
<td>automiertes Sprungbein einer Wanderheuschrecke</td>
</tr>
</tbody>
</table>

Taster

1	elastisches Metall, z. B. Federstahl (ca. 2 x 15 cm)
1	Holzleiste (ca. 5 x 20 cm)
2	Schrauben mit Muttern und Unterlegscheiben
1	Metallzange
1	Holz- und Metallbohrer
1	Krokodilklemmen
1	Korkenstück

Gewichtssortiment

1	Fischerhaken (erhältlich im Bastelgeschäft)
1 pro	Angelhaken (Ø 0,6, 1 mm)
Gewicht	mit Faden
mehrere	Metallkugeln mit Kerbung in unterschiedlichen Gewichtsabstufungen und/oder Perlen und/oder Unterlegscheiben
Feinwaage	(d = 1 mg)

| 1 | Tab. 1: Materialliste für das Experiment |

2.1 Versuchsvorbereitungen

Es werden nur Materialien verwendet, die günstig im Baumarkt, im Bastelgeschäft und im Angelbedarf zu beschaffen oder in der Physiksammlung der Schule vorhanden sind (Tab. 1). Die Wanderheuschrecken erhält man preisgünstig als Futtertiere im Zoofachhandel.

Um das Hinterbein zu entfernen, greift man die Heuschrecke vorne am Thorax und zieht fest am Femur des Beines. Im Normalfall löst sich das Bein relativ leicht ab. Besonders ausgeprägt zeigt sich das Autotomieverhalten in wärmeren Räumen. Für den Versuch eignen sich am besten Beine von ausgewachsenen Wanderheuschrecken (erkennbar am Besatz von Flügeln) mit vollständig ausgehärterter Cuticula.

2.2 Versuchsaufbau

zu anderen Unterrichtsfächern wie Physik oder Mathematik hergestellt.

2.3 Auswertung der Ergebnisse

Im Idealfall arbeiten mehrere Schülergruppen parallel und erheben gemeinsam die Daten. Das maximal mögliche Gewicht (Last), das an verschiedenen Längen Lastarmen jeweils gehoben werden kann, wird ermittelt und tabellarisch notiert. Das Ergebnis ist offensichtlich: Je länger der Lastarm, desto geringer ist die Last, die gehoben werden kann, da Kraftarm und Kraft des jeweiligen Streckmuskels immer gleich bleiben sollten.

Aus den gemittelten Maximalgewichten (Last) bei Einfachreihen sowie den zugehörigen Last- und Kraftwerten wird nun mithilfe des Hebelgesetzes die gemittelte Kraft im jeweiligen Versuchs durchgang errechnet.

\[\text{Kraft } F = \frac{\text{Last } F \times \text{Lastarm } l}{\text{Kraftarm } l} \]

Im Fall des Heuschreckenbein-Experiments ist die Last \(F \) mit dem maximal gehobenen Gewicht gleichzusetzen. Hierbei wird die Last (wie auch die Kraft) in der Einheit m angegeben (Zahlenwert um den Faktor 10 genauer: 9,81 größer als der Zahlenwert der angehängten Masse in g; vgl. Physikbücher). Der Lastarm \(l \) ist als Strecke zwischen Femur-Tibia-Gelenk und der Ansatzstelle für das Gewicht definiert, während der Kraftarm \(l \) als 1/3 der jeweiligen Tibialänge angenommen wird [9].

Beispielrechnung:
Tibialänge: 19 mm
Kraftarm \(l = 1/3 \times 19 \text{ mm} = 0,5 \text{ mm} \)
Lastarm \(l = 16 \text{ mm} \)
Last \(F = 28,6 \text{ mN} \rightarrow \text{Kraft } F = 915,2 \text{ mN} \)

Die Ergebnisse werden anschließend statistisch getestet, was auf zwei verschiedenen Wegen erfolgen kann [10, 11]. Zum einen führt man die Berechnung einer Regressionsgeraden und des zugehörigen Korrelationskoeffizienten durch (Abb. 3), der mit statistischen Tabellenwerten verglichen wird. Dazu trägt man in einem Tabellenkalkulationsprogramm für die \(x \)-Achse die jeweilige Lastlänge und für die \(y \)-Achse die dazu gehörige maximale Kraft ein. Ist der errechnete Korrelationskoeffizient \(r \) größer als der entsprechende Tabellenwert, so gilt der lineare Zusammenhang als signifikant (Irrtumswahrscheinlichkeit \(p < 0,05 \)). Zum anderen lassen sich in einem Balkendiagramm die jeweiligen Mittelwerte der maximalen Kraft (mit Standardabweichungen) bei verschiedenen Lastlängen darstellen, deren Unterschiede mit dem \(t \)-Test auf Signifikanz getestet werden (Abb. 4).

Nach der statistischen Auswertung findet man das überraschende Ergebnis, dass der Streckmuskeln immer die gleiche maximale Kraft zu entwickeln scheint (Abb. 3 und 4, [12]). Wie lässt sich der statistisch signifikante Unterschied zwischen der Kraftentwicklung am langen und am kurzen Lastarm deuten?

Vor dem Abspruch drückt die Heuschrecke ihre Hinterbeine so auf den Boden, dass Femur und Tibia eng aneinander liegen. Dabei wird die Energie der Sprungmuskeln in speziellen Cuticulaelementen der Sprungebeine gespeichert (Katapultmechanismus [3]). Im hier vorgestellten Experiment ist dieses Andücken der Beinlager zwar bei längeren (nicht aber bei kürzeren) Lastarmen gegeben, doch lässt sich am autotomierten Sprungbein – ohne gleichzeitige Aktivierung von Strecker und Beuger – der Katapultmechanismus nicht demonstrieren.

Vermutlich spielt in unserem Experiment die Vorspannung am Strecker und in anderen elastischen Elementen des Sprungbeins die entscheidende Rolle, die bei kürzeren Lastarmen (mit mehr oder weniger großen Winkeln zwischen den Beinlager) nicht wirksam wird. Somit entsteht der Eindruck, dass der Sprungmuskel bei längerem Lastarm eine größere Kraft entwickelt. Diese Überlegungen sollten mit den Schülerinnen und Schülern erörtert werden, um die Ergebnisse interpretieren zu können.

3 Vorschlag für eine Unterrichtseinheit

Für die Schule geeignete experimentelle Ansätze zur Neuro- und Muskelphysiologie findet man in der Literatur kaum. Das vorgestellte Experiment lässt sich inhärent sehr gut in das Curriculum der Qualifikationsphase an Gymnasien und Gesamtschulen integrieren.

Zunächst sollten die Lernenden mit dem Versuchstier vertraut werden. Dies kann beispielsweise durch kleine Einstiegsversuche oder die Betrachtung des Tieres geschehen. Als eine Möglichkeit für einen Einstieg bietet sich der Vergleich des Verhältnisses zwischen Körpergröße und Sprungweite bei einer Heuschrecke und einem Menschen an (Selbstversuch und/oder Vergleich mit Sportlern). Außerdem sollte der wissenschaftliche Hintergrund erläutert werden, der dem Heuschreckenbein-Experiment zugrunde liegt (Mechanismus des Heuschreckensprungs, Aufbau der Sprungbeine und des Exoskeletts, neurobiologische Grundlagen, Auto-
Versuchsaufbau

Vorbereitung
1. Bauen Sie den Taster gemäß Bauanleitung (Abb. 1) zusammen.

[Diagramm der Tastermontage]

Abb. 1: Bauanleitung für den Taster

2. Verbinden Sie zwei Minutiennadeln mit je einem Stück Klingeldraht und fixieren Sie diese mittels Adernanhälse (→ Stimuluselektroden).

Aufbau der Apparatur

5. Die zweite Stimuluselektrode verbinden Sie mit der noch freien Krokolediklemme des Tasters.

7. Stechen Sie die Elektroden im oberen Bereich des Femurs neben dem Fischgratmuster der Strecker-muskulatur durch die Cuticula; wenn nötig, können die Stimuluselektroden zusätzlich mit einem Stück Plastilin fixiert werden (Abb. 3).

8. Test: Bei Betätigung des Tasters muss sich der Muskel kontrahieren und eine Bewegung der Tibia erkennbar sein. Sollte dies nicht der Fall sein, kontrollieren Sie, ob die Elektroden die Cuticula durchstoßen haben (jedoch nicht zu tief in den Muskel eindringen sind) und ob alle elektrischen Verbindungen vorhanden sind.

Abb. 2: Versuchsaufbau

Abb. 3: autotomiertes Sprungbein
Versuchsdurchführung

1. Reizen Sie den Muskel zunächst mit Einzelimpulsen und dann mit Mehrfachimpulsen (Taster mehrfach kurz hintereinander betätigen).
3. Hängen Sie, beginnend mit dem leichtesten, die an Angelhaken befestigten Gewichte an den Fischerhaken und reizen Sie zunächst einfach. Wenn das Gewicht nicht mehr angehoben wird, reizen Sie mehrfach. Notieren Sie in Tabelle 1, welche Gewichte gehoben werden können.

Hebelgesetz:

\[F_1 = \frac{F_2 \cdot \text{Lastarm} l_b}{\text{Kraftarm} l_i} \]

Abb. 1: Ansatzpunkte für die Gewichte am langen und am kurzen Lastarm

Tibialänge = __________________________ Kraftarm \(l_i = \frac{1}{35} \cdot \) __________________________

Entfernung zwischen Femur-Tibia-Gelenk und Gewicht = __________________________

<table>
<thead>
<tr>
<th>Gewicht</th>
<th>gehoben bei Einfachreiz [ja/nein]</th>
<th>gehoben bei Mehrfachreiz [ja/nein]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1: Gewicht in der Nähe des Tarsus (= langer Lastarm)

Tibialänge = __________________________ Kraftarm \(l_i = \frac{1}{35} \cdot \) __________________________

Entfernung zwischen Femur-Tibia-Gelenk und Gewicht = __________________________

<table>
<thead>
<tr>
<th>Gewicht</th>
<th>gehoben bei Einfachreiz [ja/nein]</th>
<th>gehoben bei Mehrfachreiz [ja/nein]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2: Gewicht in der Nähe des Femur (= kurzer Lastarm)

5. Wenn Sie das maximal mögliche Gewicht ermittelt haben, das an der jeweiligen Stelle gehoben werden kann, berechnen Sie mit Hilfe des Hebelgesetzes die Kraft, die maximal vom Sprungbein aufgebracht wird.
Auch Insekten können die Luft anhalten

Versuche zur Atmung von Phasiden

J. Lange und K. Grabow

Der Beitrag verfolgt zwei Ziele. Zum einen soll ein klassischer physiologischer Versuch zur Atmung, der sich sehr gut für die Schule eignet, mit einfachen Mitteln optimiert werden. Zum anderen soll überzeugend demonstriert werden, dass die Atmung von Insekten mehr ist als nur eine ungesteuerte, kontinuierliche Diffusion in den Tracheen.

1 Einleitung